If .750 L of CO2 is needed for a cake and each kilogram of baking powder contains 168 grams of NaHCO3, how many grams of baking powder must be used to generate this amount of CO2? The density of CO2 at baking temperature is about 1.20 g/l.
the balance equation is- 2NaHCO2+Ca(H2PO4)--%26gt; Na2HP04+CaHPO4+2CO2+2H20How many grams of baking powder must be used to generate .750 L of CO2?
hints
calculate mass CO2 needed
convert to moles CO2 needed
convert to moles NaHCO3 needed
convert to mass NaHCO3 needed
convert to mass of baking soda
solution....
.750 L CO2 x 1.20 g / L = 0.90 g CO2
moles CO2 = mass / mw = 0.90 g CO2 / 44.0 g/mole = 0.0205 moles CO2
from balanced equation, 2 CO2 requires 2 NaHCO3
0.0205 moles CO2 x (2 NaHCO3 / 2 CO2) = .0205 moles NaHCO3
moles NaHCO3 = wt / mw ----%26gt; wt NaHCO3= moles x mw = 0.0205 moles x 84.00 g/mole = 1.72 g NaHCO3
finally convert to baking soda....
1.72 g NaHCO3 x (1 kg baking soda / 168 g NaHCO3) x (1000 g / kg) = 10.2 grams baking soda
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment